QUESTION BANK (DESCRIPTIVE) Subject with Code : MFCS(16CS507) Course & Branch: B.Tech - (~SE
Year &Sem: II-B.Tech& I-SemRegulation:R16	LSE
UNIT – I	
MATHEMATICAL LOGIC	
1. a) Explain conjuction and disjuction with suitable examples. [5]	5M]
b) Define tautology and contradiction with examples.	[5M]
2. a)Show that (a) $(\neg P \land \neg Q \land R) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$	[5M](b)
$(P \rightarrow Q) \rightarrow Q) \Rightarrow P \lor Q$ without constructing truth table	[5M]
3. a)Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow \neg R, P$ are consistent [4M]	
b) Give the converse, inverse and contrapositive of the proposition P	$\rightarrow (Q \land R)$. [3M]
c) Show that $(P \to Q) \land ((Q \to R) \Rightarrow (P \to Q) [3M]$	
4. a)What is principle disjunctive normal form? Obtain the PDNF of	
4. a)What is principle disjunctive normal form? Obtain the PDNF of $P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$	5M]
 4. a)What is principle disjunctive normal form? Obtain the PDNF of P→((P→Q) ∧ ¬(¬Q ∨ ¬P)) b) What is principle conjunctive normal form? Obtain the PCNF 	_
$P \to ((P \to Q) \land \neg (\neg Q \lor \neg P))$	_
$P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) What is principle conjunctive normal form? Obtain the PCNF	of
$P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) What is principle conjunctive normal form? Obtain the PCNF $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$	of
$P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) What is principle conjunctive normal form? Obtain the PCNF $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ 5.(a) Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$	of 5M
$P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) What is principle conjunctive normal form? Obtain the PCNF $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ 5.(a) Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$	of 5M
$P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) What is principle conjunctive normal form? Obtain the PCNF $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ 5.(a) Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$ (b)Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \rightarrow R, P \rightarrow Mand \neg M$	of 5M 5M
$P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) What is principle conjunctive normal form? Obtain the PCNF $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ 5.(a) Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$ (b)Show that $R \land (P \lor Q)$ is a valid conclusion from the premises	of 5M 5M [5M]
$P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) What is principle conjunctive normal form? Obtain the PCNF $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ 5.(a) Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$ (b)Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \rightarrow R, P \rightarrow Mand \neg M$ 6.(a) Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)(P(x) \land (\exists x)(Q(x) [5M]$	of 5M 5M [5M]
$P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) What is principle conjunctive normal form? Obtain the PCNF $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ 5.(a) Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$ (b)Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \rightarrow R, P \rightarrow Mand \neg M$ 6.(a) Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)(P(x) \land (\exists x)(Q(x) [5M]$ (b) Show that $(\forall x)(P(x) \rightarrow Q(x)) \land (\forall x)(Q(x) \rightarrow R(x)) \Rightarrow (\forall x)(P(x) \land (\forall x)(Q(x) \rightarrow R(x))) \Rightarrow (\forall x)(P(x) \land (\forall x)(Q(x) \land (\forall x)($	of $5M$ 5M [5M] $\rightarrow R(x))[5M]$
$P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) What is principle conjunctive normal form? Obtain the PCNF $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ 5.(a) Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$ (b)Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \rightarrow R, P \rightarrow Mand \neg M$ 6.(a) Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)(P(x) \land (\exists x)(Q(x) [5M]$ (b) Show that $(\forall x)(P(x) \rightarrow Q(x)) \land (\forall x)(Q(x) \rightarrow R(x)) \Rightarrow (\forall x)(P(x)$ 7.(a) Define Quantifiers and types of Quantifiers with examples.	of $5M$ 5M [5M] $\rightarrow R(x))[5M]$

Question Bank2016b) Define Maxterms & Minterms of P & Q & give their truth tables[5M]9. (a) Define NAND, NOR and XOR and give their truth tables.[5M](b)Define Exclusive & inclusive disjunctions with an example[5M]10.a) Show that S is a valid conclusion from the premises $p \rightarrow q, p \rightarrow r, \neg(q \land r)and(S \lor p)$.[5M]b) Obtain PCNF of A= $(p \land q) \lor (\sim p \land q) \lor (q \land r)$ by constructing PDNF.[5M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MFCS (16CS507) Course & Branch: B.Tech - CSE

Year &Sem: II-B.Tech& I-Sem

Regulation:R16

UNIT II

RELATIONS, FUNCTIONS, ALGEBRAIC STRUCTURES

1.a) Define an equivalence relation ? If R be a relation in the set of integers Z defined by

 $R = \{ (x, y) : x \in Z, y \in Z, (x - y) \text{ is divisible by 6} \}$.then prove that R isan equivalence relation ? [5M] **b**) Let $A = \{1, 2, 3, 4, 5, 6, 7\}$. determine a relation R on A by aRb $\Leftrightarrow 3$ divides (a - b), show that R isan equivalence relation ? [5M] **2.a)** Let A = { 1,2,3,4} and let R = { (1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)} be an equivalence relation on R ? determine A/R [5M]. **b**) Define compatability relation & maximal compatability **3** .Let A be a given finite set and P(A) its power set . let \subseteq be the inclusion relation on the elements of P(A). Draw the Hass diagram of (P(A), \subseteq) for i) A = { a } ii) A = { a, b} iii)) $A = \{a,b,c\}$ iv)) $A = \{a,b,c,d\}$ [10M] **4.** a) Define Bijective function with an 2 examples . [5M] **b**) Define primitive recursive function ?show that the function f(x, y) = x + y is primitive recursive. [5M] **5 a).**Let $f: A \to B, g: B \to C, h: C \to D$ then prove that ho(gof) = (hog)of[5M]**(b)**If $f: R \to R$ such that f(x) = 2x+1, and $g: R \to R$ such that g(x) = x/3 then verify that $(gof)^{-1} = f^{-1}og^{-1}$ [5M]6.a)Define a binary relation. Give an example.Let R be the relation from the set $A = \{1, 3, 4\}$ on itself and defined by $R = \{ (1, 1), (1, 3), (3, 3), (4, 4) \}$ the find the matrix of R , draw the graph of R. [5M]

b) Define and give an examples for group, semigroup, subgroup &abelian group [5M]

7.a) Prove that the set Z of all integers with the binary operation *, defined as a * b = a + b + 1, $\forall a, b \in Z$ is an abelian group. [5M]

b)Explain the concepts of homomorphism and isomorphism of groups with examples[5M]
8. a)Let s={a,b,c} and let *denotes a binary operation on 's' is given below also let p={1,2,3} and addition be a binary operation on 'p' is given below.show that (s,*) & (p,(+)) are isomorphic. [5M]

*	А	В	С
А	А	В	С
В	В	В	С
С	С	В	С

(+)	1	2	3
1	1	2	1
2	1	2	2
3	1	2	3

b)On the set Q of all rational number operation * is defined by a*b=a+b-ab.
Show that this operation Q froms a commutative monoid. [5M]
9. a)The necessary and sufficient condition for a non – empty subset H of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ [5M]
b)Show that the set={1,2,3,4,5} is not a group under addition & multiplication modulo 6
10.a)Show that every homomorphic image of an abelian group is abelian. [5M]
b)The necessary and sufficient condition for a non-empty sub-set H of a Group (G,*) to be a sub group is a∈H,b∈H=>a*b⁻¹€h [5M]

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MFCS (16CS507) Course & Branch: B.Tech - CSE

Year &Sem: II-B.Tech& I-Sem

Regulation: R16 UNIT III

ELEMENTARY COMBINATORICS

1.(a) Enumerate the number of non negative integral solutions to the inequility

 $x_1 + x_2 + x_3 + x_4 + x_5 \le 19$.

b) How many integral solutions are there to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where each

(i) $x_i \ge 2$? (ii) $x_i > 2$?

2 a) How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9 if no repetitions areallowed? [5M]

(**b**) What is the co-efficient of (i) $x^3 y^7$ in $(x + y)^{10}$? (ii) x^2y^4 in $(x - 2y)^6$ [5M] 3. a) Out of 5 men and 2 women, a committee of 3 is to be formed. In how many ways Canitbe formed if atleast one woman is to be included? [5M] b) Find the number of arrangements of the letters in the word ACCOUNTANT. [5M] 4 a). The question paper of mathematics contains two questions divided into two Groups of5questions each. In howmany ways can an examine answer six questions

Takingatleast twoquestions from each group

b) How many permutations can be formed out of the letters of word "SUNDAY"? How many of these (i) Begin with S? (ii) end with Y? (iii) begin with S & end with Y? (iv) S & Y always together? [5M] **5** (a)Inhowmany ways can the letters of the word COMPUTER be arranged? Howmany of them begin with C and end with R? howmany of them do not begin with C but end with R?

b)Outof 9 girls and 15 boys howmany different committees can be formed each

consisting of 6 boysand 4 girls? [5M]

6.(a) Define product rule? State Binomial theorem?Define permutation? [5M]

b) Find the coefficient of (i) $x^3y^2z^2$ in $(2x - y + z)^9$. (ii) x^6y^3 in $(x - 3y)^9$.

7.(a)Prove that Inclusion – Exclusion principle for two sets A & B.

b)Find how many integers between 1 and 60 that are divisible by 2 nor by 3 and nor by 5. Also determine the number of integers divisible by 5 not by 2, not by 3.

Discrete Mathematics

[5M]

[5M]

[5M]

Page5

8 a) out of 80 students in a class, 60 play foot ball, 53 play hockey, and 35 both the games.how many students (i) do not play of these games. (ii) play only hockey but not foot ball

b)A survey among 100 students shows that of the three ice cream flavours vanilla, chocolate, straw berry . 50 students like vanilla, 43 like chocolate, 28 like straw berry, 13 like vanilla and chocolate, 11 like chocolate and straw berry, 12 like straw berry and vanilla and 5 like all of them. Find the following.

1. Chocolate but not straw berry

2. Chocolate and straw berry but not vannila

3. Vanilla or Chocolate but not straw berry

9.a)How many different license plates are there that involve 1,2or 3 letters followed by 4 digits ?

b) Find the minimum number of students in a class to be sure that 4 out of them are born on the same month.?

- **10.a)** Applying pigeon hole principle show that of any 14 integers are selected from the set $S = \{1, 2, 3, \dots, 25\}$ there are atleast two whose seem is 26. Also write a statement that generalizes this result.
 - **b**) show that if 8 people are in a room , at least two of them have birthdays that occur on the same day of the week.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MFCS (16CS507) Course & Branch: B.Tech - CSE

Year &Sem: II-B.Tech& I-Sem

UNIT IV

Regulation: R16

RECURRRENCE RELATION

1.a) Find the generating function for the sequence 1,1,1,3,1,1,....

b) Find the coefficient of x^{20} in $(x^2 + x^3 + x^4 + x^5 + x^6)^5$? [5M]

2.a) Determine the sequence generated by

(i)
$$f(x) = 2e^{x} + 3x^{2}$$
 (ii) $7 e^{8x} - 4 e^{3x}$. [5M]

b) Find the sequence generated by the following generating functions

(i)
$$(2x-3)^3$$
 (ii) $\frac{x^4}{1-x}$ [5M]

3. a)Solve $a_n = a_{n-1} + 2a_{n-2}$, $n > 2$ with condition the initial $a_0 = 0$, $a_1 = 1$.	[5M]
b)Solve a_{n+2} - 5 a_{n+1} + 6 a_n = 2, with condition the initial $a_0 = 1$, $a_1 = -1$.	[5 M]
4.a)Solve the RR a_{n+2} - $2a_{n+1}$ + $a_n = 2^n$ with initial condition $a_0=2$ & $a_1=1$.	[5M]
b) Using generating function solve $a_n = 3 a_{n-1} + 2$, $a_0 = 1$.	[5M]
5. a) Solve the following $y_{n+2} - y_{n+1} - 2 y_n = n^2$.	[5M]
b)Solve $a_n - 5 a_{n-1} + 6 a_{n-2} = 1$.	[5M]
6 a) Solve the recurrence relation $a_r = a_{r-1} + a_{r-2}$ Using generating function.	[5M]
b)Solve the recurrence relation using generating functions $a_n - 9a_{n-1} + 20a_{n-2}$	$= 0$ for $n \ge 2$

and
$$a_0 = -3, a_1 = -10$$
 [5M]

7)a) Solve the recurrence relation
$$a_n = a_{n-1} + \frac{n(n+1)}{2}$$
 [5M]

b)solve $a_k = k(a_{k-1})^2$, $k \ge 1$, $a_0 = 1$

8.Solve the recurrence relations

- **a**) $d_n=2d_{n-1}-d_{n-2}$ with initial conditions $d_1=1.5$ and $d_2=3$. [5M]
 - **b**) $b_n=3b_{n-1}-b_{n-2}$ with initial conditions $b_1=-2$ and $b_2=4$. [5M]
- **9 a**)Solve $a_n 7 a_{n-1} + 10 a_{n-2} = 4^n$. [5M]
 - **b**) Solve $a_n = a_{n-1} + 2a_{n-2}$, n > 2 with condition the initial $a_0 = 2$, $a_1 = 1$ [5M]

10. a) Solve $a_n - 5 a_{n-1} + 6 a_{n-2} = 2^n$, $n > 2$ with condition the initial $a_0 = 1$, $a_1 = 1$. Using	ng	
generating function .	[5M]	
b) Solve $a_n - 4 a_{n-1} + 4a_{n-2} = (n+1)^2$ given $a_0 = 0$, $a_1 = 1$.		[5M]

b) Solve $a_n - 4 a_{n-1} + 4a_{n-2} = (n+1)^2$ given $a_0 = 0$, $a_1 = 1$.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MFCS (16CS507) Course & Branch: B.Tech - CSE

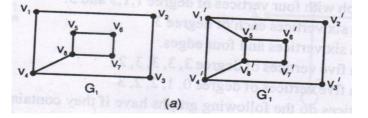
Year &Sem: II-B.Tech& I-Sem

Regulation:R16

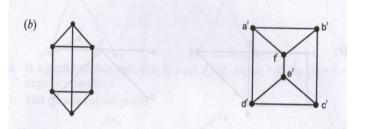
UNIT –V

GRAPH THEORY

 (ii) Complete bipartite graph K_{m,n}(iii) Cycle graph C_n (iv) Path graph P_n(v) Null graph N_n [5M] b)Show that the maximum number of edges in a simple graph with n vertices is n (n-1)/2 [5M] 2.a)Define isomorphism. Explain Isomorphism of graphs with a suitable example. [5M] b) Explain graphcoloring and chromatic number give an example. [5M] a) Explain about complete graph and planar graph with an example. b) Define the following graph with one suitable examples for each graphs. (i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph 4.a)Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example? [5M] b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example. [5M] b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? (5M] 6. (a) Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges down and the start of the st	1.a) Determine the number of edges in (i) Complete graph K_n	
 b)Show that the maximum number of edges in a simple graph with n vertices is n (n-1)/2 [5M] 2.a)Define isomorphism. Explain Isomorphism of graphs with a suitable example. [5M] b) Explain graphcoloring and chromatic number give an example. [5M] 3. a)Explain about complete graph and planar graph with an example [5M] b) Define the following graph with one suitable examples for each graphs (i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph [5M] 4. a)Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example? [5M] b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example [5M] b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M] 	(ii) Complete bipartite graph K _{m,n} (iii) Cycle graph C _n	
 2.a)Define isomorphism. Explain Isomorphism of graphs with a suitable example. [5M] b) Explain graphcoloring and chromatic number give an example. [5M] 3. a)Explain about complete graph and planar graph with an example [5M] b) Define the following graph with one suitable examples for each graphs (i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph [5M] 4. a)Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example? [5M] b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example for degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M] 	(iv) Path graph $P_n(v)$ Null graph N_n	[5M]
 b) Explain graphcoloring and chromatic number give an example. [5M] 3. a) Explain about complete graph and planar graph with an example [5M] b) Define the following graph with one suitable examples for each graphs (i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph [5M] 4. a) Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example? [5M] b) Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example [5M] b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M] 	b)Show that the maximum number of edges in a simple graph with n vertices is n (n-	1)/2 [5M]
3. a)Explain about complete graph and planar graph with an example [5M] b) Define the following graph with one suitable examples for each graphs [5M] (i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph [5M] 4 .a)Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example? [5M] b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example [5M] b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M]	2.a)Define isomorphism. Explain Isomorphism of graphs with a suitable example.	[5M]
 b) Define the following graph with one suitable examples for each graphs (i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph [5M] 4.a) Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example? [5M] b) Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M] 	b) Explain graphcoloring and chromatic number give an example.	[5M]
 (i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph [5M] 4.a)Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example? [5M] b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example [5M] b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M] 	3. a)Explain about complete graph and planar graph with an example	[5M]
 4 .a)Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example? [5M] b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example [5M] b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M] 	b) Define the following graph with one suitable examples for each graphs	
representation of graphs. Illustrate with an example? [5M] b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example [5M] b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M]	(i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph	[5M]
 b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit [5M] 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example [5M] b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M] 	4.a)Explain In degree and out degree of graph. Also explain about the adjacency ma	trix
 5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) traversal of a graph with suitable example [5M] b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. Find the number of vertices in G? [5M] 	representation of graphs. Illustrate with an example? [5M]	
a graph with suitable example[5M]b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3.Find the number of vertices in G?[5M]	b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian c	ircuit [5M]
b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3.Find the number of vertices in G? [5M]	5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) tra-	versal of
Find the number of vertices in G? [5M]	a graph with suitable example	[5M]
	b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree	3.
6 . (a) Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges does the	Find the number of vertices in G?	[5M]
	6 . (a) Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges does	s the
graph have ? [5M]	graph have ?	[5M]
b) Give an example of a graph which is Hamiltonian but not Eulerian and vice versa . [5M]	b) Give an example of a graph which is Hamiltonian but not Eulerian and vice versa .	[5M]
7 .a)Let G be a 4 – Regular connected planar graph having 16 edges. Find the number of	7 . a)Let G be a 4 – Regular connected planar graph having 16 edges. Find the number	er of
regions of G. [5M]	regions of G.	[5M]
	b)Draw the graph represented by given Adjacency matrix	[5M]
	b)Draw the graph represented by given Adjacency matrix	[5M]


[5M]

[5M]


	1	2	0	1		0	1	0	1
(i)	2	0	3	0	(;;)	1	0	1	0
(1)	1 2 0	3	1	1	(ii)	0	1	0	1
	1	0	1	0		1	0	1	0

8.a) Show that in any graph the number of odd degree vertices is even.

b) Is the following pairs of graphs are isomorphic or not ?

9. a) Show that the two graphs shown below are isomorphic ?

b) Ex	plain about the Rooted tree with an example ?	[5M]
10. (a)(i)Find the chromatic polynomial & chromatic number for K $_{3,3}$	[5M]
(ii) De	efine Euler circuit, Hamilton cycle ,Wheel graph ?	[5M]
(b)	Define Spanning tree and explain the algorithm for Breadth First Search (BF	S) traversal of

a graph with suitable example

[5M]

[5M]

SIDDHARTHGROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road - 517583 **QUESTION BANK (OBJECTIVE)** Subject with Code :MFCS(16CS507) Course & Branch: B.Tech - CSE Year &Sem: II- B. Tech& I-SemRegulation:R16 UNIT I **MATHEMATICAL LOGIC** 1. In the statement $P \rightarrow Q$, the statement P is called [] A) Consequent B) Antecedent C) Both A&B D)Sequent 2. What is the negation of the statement "I went to my class yesterday "[] A) I did not go to my class yesterdayB) I was absent from my class yesterday C) It is not the case that I went to my class yesterday D) All the above 3. Which of the following statement is well formed formula ſ] A) $P \to Q \to \land Q$ B) $(P \land Q) \to R$ C) $((Q \land (P \to Q)) \to R)$ D) None 4. $((P \to Q) \lor \neg (P \to Q)) \land (P \to (P \to Q)) \Leftrightarrow$ ſ 1 A) T B) F C) Contingency D) Non 5. $P \uparrow Q \Leftrightarrow$] ſ B) $\neg (P \lor O)$ C) $\neg (P \land O)$ D) $P \lor O$ A) $P \wedge Q$ 6. The Rule CP is also called Γ 1 A) Contradiction of proof B) Conditional proof C) Consistency of premises D) none 7. If $H_1, H_2, ---, H_m$ are the premises and their conjunction is identically false then The formulas $H_1, H_2, ---, H_m$ are called [] A) Consistent B) Tautology C) Inconsistent D) None 8. The α and β are string of formulas. If α and β have at least one variable in Common then the sequent $\alpha \xrightarrow{s} \beta$ is 1 ſ A)String of formula B)String C) Sequent D) Axiom 9. Symbolize the statement "Every apple is red" ſ] A) $(\exists x)(A(x) \land R(x))$ B) $(\forall x)(A(x) \land R(x))$ C) $(\exists x)(A(x) \rightarrow R(x))$ D) $(\forall x)(A(x) \rightarrow R(x))$ **Discrete Mathematics**

				Bank		
10. $\neg(\forall x)A(x)$					[]
A) $(\forall x)A(x)$	B) $\neg(\exists x)A(x)$	C) $(\exists x) \neg A(x)$	D) None			
11. A statement is a	a declarative sentend	ce that is		[]	
A) true	B) false	C) true & false	D) none	-	-	
12. A Formula of d	isjunctions of minte	erms only is known	as	[]	
A) DNF	B) CNF	C)PDNF	D)PCNF			
13. pv7p=				[]	
A) P	B)T	C)F	D)7P			
14. Let p: He is old	q:He is clever, writ	te the statement "He	e is old but not clever'	" in symt	olic	forn
					[
A)p^q	B)p^7q	C)7p^7q	D)7(7p^7q)			
15. The proposition	p^p is equivalent to	0		[]	
A)1	В)р	С)7р	D)none			
16. The connective	s ^ and v are also ca	alled to	each other		[]
			cucii otnei			
A)NAND	B) NOR	C) XOR	D) dua	al	L	
A)NAND	B) NOR	C) XOR			L	
A)NAND	B) NOR	C) XOR	D) dua]	
A)NAND	B) NOR orm of "All men are	C) XOR e mortal" where M(:	D) dua	s mortal]	
A)NAND 17. The symbolic fo A)M(x)→H(x	B) NOR orm of "All men are	C) XOR e mortal" where M(:	D) dua x):x is a men H(x):x i	s mortal []	
A)NAND 17. The symbolic fo A)M(x)→H(x	B) NOR orm of "All men are	C) XOR e mortal" where M(x $I(x) \rightarrow H(x)$] C)(D) dua x):x is a men H(x):x i эx)(M(x)→H(x)]	s mortal [D)none []	
A)NAND 17. The symbolic fo A)M(x)→H(x 18. 7(p→q)= A) 7pv7q	B) NOR form of "All men are (x) B)(x)[M	C) XOR e mortal" where M($(x) \rightarrow H(x)$] C)([(x) $\rightarrow H(x)$] C)(D) dua x):x is a men H(x):x i эx)(M(x)→H(x)]	s mortal [D)none []	
A)NAND 17. The symbolic fo A)M(x)→H(x 18. 7(p→q)= A) 7pv7q	B) NOR form of "All men are (x) B)(x)[M B) p^7q een sits between ma	C) XOR e mortal" where M($(x) \rightarrow H(x)$] C)(((x) $\rightarrow H(x)$] C)((C) $p \rightarrow c$ dhuand mohan is a	D) dua x):x is a men H(x):x i эx)(M(x)→H(x)]	s mortal [D)none []	
A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pres	B) NOR form of "All men are (x) B)(x)[M B) p^7q een sits between ma	C) XOR e mortal" where M($(x) \rightarrow H(x)$] C)([(x) $\rightarrow H(x)$] C)([C) $p \rightarrow c$ dhuand mohan is a predicate C)2-pla	D) dua x):x is a men H(x):x i $(M(x) \rightarrow H(x)]$ q D) $p \rightarrow 7q$	s mortal [D)none []	
A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pres	B) NOR form of "All men are (x) B)(x)[M B) p^7q ten sits between man dicate B)4-place	C) XOR e mortal" where M($(x) \rightarrow H(x)$] C)([(x) $\rightarrow H(x)$] C)([C) $p \rightarrow c$ dhuand mohan is a predicate C)2-pla	D) dua x):x is a men H(x):x i $(M(x) \rightarrow H(x)]$ q D) $p \rightarrow 7q$	s mortal [D)none [) ,]	
A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pred 20. We symbolize ' A) ($\forall x$)	B) NOR form of "All men are (x) B)(x)[M B) p^7q (een sits between man dicate B)4-place 'for all x" by the syn B) $(\exists x)$	C) XOR e mortal" where M(: $I(x) \rightarrow H(x)$] C)(I C) $p \rightarrow c$ dhuand mohan is a predicate C)2-pla mbol is C)[x]	D) dua x):x is a men H(x):x i $(M(x) \rightarrow H(x)]$ D) $p \rightarrow 7q$ ice predicate D)none	s mortal [D)none [[]]]	
A)NAND 17. The symbolic for A)M(x) \rightarrow H(x) 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pred 20. We symbolize ' A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(B) NOR form of "All men are and a block) (M) B) (x) B) (x) B) (x) B) (x) between man block (a block) (b) (x) (x)] the scope of the	C) XOR e mortal" where M(: $I(x) \rightarrow H(x)$] C)(I C) $p \rightarrow c$ dhuand mohan is a predicate C)2-pla mbol is C)[x] quantifier is	D) dua x):x is a men H(x):x i $(M(x) \rightarrow H(x)]$ Q D) $p \rightarrow 7q$ ice predicate D)none D) \forall	s mortal [D)none [) ,]	
A)NAND 17. The symbolic for A)M(x) \rightarrow H(x) 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place prese 20. We symbolize ' A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(A)p(x)	B) NOR form of "All men are (x) B)(x)[M B) p^7q ten sits between man dicate B)4-place 'for all x" by the syn B) $(\exists x)$	C) XOR e mortal" where M(: $I(x) \rightarrow H(x)$] C)(I C) $p \rightarrow c$ dhuand mohan is a predicate C)2-pla mbol is C)[x]	D) dua x):x is a men H(x):x i $(M(x) \rightarrow H(x)]$ D) $p \rightarrow 7q$ ice predicate D)none	s mortal [D)none [[))]]	1
A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pred 20. We symbolize ' A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(A)p(x) 22. (p \rightarrow q) \Leftrightarrow	B) NOR form of "All men are are are b) $B)(x)[M$ B) p^7q the sits between many b) p^7q are sits between many chicate B)4-place b) $(\exists x)$ b) $(\exists x)$ (x)] the scope of the B) $Q(x) \rightarrow p(x)$	C) XOR e mortal" where M(x) $[(x) \rightarrow H(x)]$ C)(x) $[(x) \rightarrow H(x)]$ C)(x) dhuand mohan is a predicate C)2-pla mbol is C)[x] quantifier is C)p(x) \rightarrow Q(x)	D) dua x):x is a men H(x):x i $(M(x) \rightarrow H(x)]$ Q D) $p \rightarrow 7q$ ice predicate D)none D) \forall	s mortal [D)none [[]]]]
A)NAND 17. The symbolic for A)M(x) \rightarrow H(x) 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pred 20. We symbolize ' A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(A)p(x) 22. (p \rightarrow q) \Leftrightarrow A)pvq	B) NOR form of "All men are are are b) $B)(x)[M$ B) p^7q b) p^7q b) p^7q cen sits between man b) p^7q cen sits between man b) p^7q cen sits between man b) p^7q construction b) p^7q construction b) p^7q construction b) p^7q construction construction construction b) p^7q construction construct	C) XOR e mortal" where M((x) $((x) \rightarrow H(x))$ C)((x) $(x) \rightarrow H(x)$ C) (x) $(x) \rightarrow H(x)$ C) (x) $(x) \rightarrow H(x)$ $(x) \rightarrow H($	D) dua x):x is a men H(x):x i $(M(x) \rightarrow H(x)]$ A D) $p \rightarrow 7q$ ice predicate D)none D) \forall D)none	s mortal [D)none [[[)))]]]
A)NAND 17. The symbolic for A)M(x) \rightarrow H(x) 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pred 20. We symbolize ' A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(A)p(x) 22. (p \rightarrow q) \Leftrightarrow A)pvq	B) NOR form of "All men are are are b) $B)(x)[M$ B) p^7q the sits between many b) p^7q are sits between many chicate B)4-place b) $(\exists x)$ b) $(\exists x)$ (x)] the scope of the B) $Q(x) \rightarrow p(x)$	C) XOR e mortal" where M((x) $((x) \rightarrow H(x)]$ C)($(x) \rightarrow H(x)$] C)($(x) \rightarrow C$) (1 C) $p \rightarrow C$ dhuand mohan is a predicate C)2-pla mbol is C)[x] quantifier is C)p(x) \rightarrow Q(x) C)7pvq	D) dua x):x is a men H(x):x i $(M(x) \rightarrow H(x)]$ A D) $p \rightarrow 7q$ ice predicate D)none D) \forall D)none	s mortal [D)none [[))]]]
A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pred 20. We symbolize ' A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(A)p(x) 22. (p \rightarrow q) \Leftrightarrow A)pvq 23. If p is true , q is	B) NOR form of "All men are (x) B)(x)[M B) p^7q then sits between many dicate B)4-place 'for all x" by the syntes B) $(\exists x)$ (x)] the scope of the B) $Q(x) \rightarrow p(x)$ B) $pv7q$ a false then $p \rightarrow q$ is	C) XOR e mortal" where M((x) $((x) \rightarrow H(x))$ C)((x) $(x) \rightarrow H(x)$ C) (x) $(x) \rightarrow H(x)$ C) (x) $(x) \rightarrow H(x)$ $(x) \rightarrow H($	D) dua x):x is a men H(x):x i $(x) \rightarrow H(x)$ $(x) \rightarrow H(x)$ $(x) \rightarrow 7q$ $(x) p \rightarrow 7q$	s mortal [D)none [[[)))]]]

			Qu	uestion B	ank	20)16
25. A formula cons	isting of a product o	f elementar	y sum is called		[]	
A)CNF	B)DNF	C)PDNF	D)PC	NF			
26. 7(pvq) <=>					[]	
A)7p^7q	B) 7pv7q	C) p^q	D) pvq			
27. A proposition	btained by inserting	g the word no	ot in the appropri	ate place is ca	lled []	
A) conjunction	on B)disjunc	tion	C) Negation	D)Imp	olicatio	n	
28. p,p → q⇒						[]
A)p B) c	1 (C)p → q	D) 7p				
29. p^(qvr) <=>					[]	
A) (pvq) ^(q	vr) B) (pvq) ^(p ^ r)	C) (p^q) v (p	^r) D) (p^	ʻq) v (q	q^r)	
30. The logical trut	h or a universal valio	l statement i	s called		[]	
A)contingenc	y B)tautolog	У	C)absurdity	D)contrac	diction		
31. Implication I_{11} i	S				[]	
A) p,p \rightarrow q=>q	B) p,q=>p	^q	C) 7q,p → q=>p) D))none		
32. New proposition	ns are obtained by th	ne given proj	position with the	help of	[]	
A)conjunction	n B) connectives	C) (compound propos	sition D) none		
33. Equivalence E_{18}	is				[]	
A) p,p \rightarrow q=>q	B) p,q=>p	^q	C) 7q,p → q=>p	D)no	one		
34. R v(p^7p) <=>						[]
A)p	B) 7p	C) R	D) 7R				
35. p^q =>						[]
A)p	B) Q C) both A and	l B D) none				
36. In (x)[p(x) ^Q(x	()] the scope of the c	uantifier is				[]
A)p(x)	B)Q(x) ^p(x)	C)p(x) ′	`Q(x) D)) Q(x)			
37. Which of the fo	llowing is contrapo	sitive law				[]
A) $p \rightarrow q \equiv \sim$	$q \rightarrow \sim p B$) $p \rightarrow q \equiv$	$\sim q \rightarrow p$ C)	$p \wedge p \equiv p$ D) none			
38. Every Rectangle	e is a Square				[]	
A)T	B) F	C) both	T&F D) none	L	1	
	isting of a sum of el	-			[]	
A)CNF	B)DNF	C)PDNF		NF	L	-	
40. p^7p=	·		,		[]	
	B)T	C)F	D)7P			-	

		Questio	n Bank 2016
	SIDDHARTH GROUP OF IN	STITUTIONS :: PUTT	UR
	Siddharth Nagar, Narayana	wanam Road – 517583	
	QUESTION BANK	(OBJE <u>CTIVE)</u>	
Subje	ect with Code : MFCS (16CS507)		Tech – CSE
Ū.	m : II B.Tech I SEM ,		Regulation :R16
	RELATIONS, FUNCTIONS, A	ALGEBRAIC STRUC	<u>FURES</u>
1. Let $A = \{1, 2, 3,$	4}. Let <i>f</i> , g and h be functions of	A into R. Which one of	them is
one- one?			[]
(A) f(1) = 3,	f(2) = 4, f(3) = 5, f(4) = 3 (B) $g(1)$	1) = 2, g(2) = 4, g(3) = 5	g(4) = 3
(C) $h(1) = 2, l$	h(2) = 4, h(3) = 3, h(4) = 2 (D) No	one of above	
2. Let $A = [-1, 1]$.	Which of these functions are biject	tive on A?	[]
$(\mathbf{A})f(\mathbf{x})=\mathbf{x}^2$	(B) $g(x) = x^3$ (C) $h(x)$	$= x^4$ (D) None	of above
3. Let $S = \{a, b\}$	o, c, d}. Which of the following set	ts of ordered pairs is a fu	unction of
S into S?			[]
(A) {(a, b), (c, a	a), (b, d), (d, c), (c, a)} (B) $\{(a, c), (a, c), (a,$	(b, c), (d, a), (c, b), (b, d	1)}
(C) {(a, c), (b,	d), (d, b) (D) { (d, b)	b), (c, a), (b, e), a, c)}	
4. If x1=x2 =>	f(x1)=f(x2) then the function f is s	said to be []	
A)injective	B)surjective C)bijective	D)none	
5. If every elem	nent of y has the pre-image in x un	nder the function of f the	enfis[]
A)one-one	B)on-to C)one-to	o-one D)none	
6. If f^{-1} exits for	r 'f' then obviously f ⁻¹ is also	[]	
A) one-one	B) on-to C)one-one & on-to	D)none	
7. If $f(x)=x^2+1$	&g(x)=x-1 then $fog(x)=$	[]	
A)x ² -2x+2	B)x ² -2x-2 C)x ² -2x	D)none	
8. A mapping I	$x::x \rightarrow x$ is called an	[]	
A)Reflexive	B)identity C)inverse	D)none	
9. If f:x→y is in	nvertable the $f^{-1}of =$	[]	
A)f	B) f^{-1} C) I_x	D)none	
10.The algebraic	c system (S,\circ) is called is the o	operation o is associativ	e[]
A) Group	B) Monoid C) Sem	ni group D) Abelian group

then the ident	ity element is		[]	
A) 1	B) 0 C) -1	D) None			
12.Let g be a ho	omomorphism from (X,o) to $(Y,*)$.	If $g: X \to Y$ is one	e-to-on	e and (onto
hen g is called		[]		
A) Bijection B) Isom	orphism C) Epimorphism D) M	Monomorphism			
	ve then there must be a		[]	
A) Node	B) loop c)	vertex		d) e	dge
14.A relation which sa	atisfies reflexive, symmetric, & transiti	ive is called as –		[]
A) Equivalence	B) compatibilityc) partion of set	d) coverin	g		
15. If n(A)=20,n(B)=3	0 and $n(A \cap B)=5$ then $n(A \cup B)=$		[]	
A) 40	B) 55 C) 45 D) 50)			
16.If A={2,4,6,8,10,1	12} then the set builder form is			[]
A) { 2X/ X	is natural number < 7 } B){ 2X/ X	is natural number < 9	}		
C) { 2X/ X	is natural number < 5 } D){ 2X/ X is	natural number < 17	}		
17 If U={1,2,3,4,5,6,	7} find the set specified with bit string	g of 1010100 is		[]
A) {1,2,3,4,5,6,	7 B) $\{1,3,,5,\}$ C) $\{1,2,3,4,\}$ D) $\{1,2,3,4,\}$ D)	,2,3}			
_	h} find the set specified with bit string	-		[]
A) 10010111	B) 10010101 C) 10101010	D) 10001	010	_]
A) 1001011119. A Relation R in a s	B) 10010101 C) 10101010 et 'X' is if for every x,y	D) 10001 ,z∈X and xRy∩yRzthe	010	_	_
A) 1001011119. A Relation R in a s	B) 10010101 C) 10101010 et 'X' is if for every x,y	D) 10001	010	_	_
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra	B) 10010101 C) 10101010 et 'X' is if for every x,y	D) 10001 ,z∈X and xRy∩yRzthe D) none	010	_	_
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a	B) 10010101 C) 10101010 et 'X' is if for every x,y ansitiveC) symmetric	D) 10001 ,z∈X and xRy∩yRzthe D) none	010	[]	_
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a A) $x + 2$	B) 10010101 C) 10101010 et 'X' is if for every x,y, ansitiveC) symmetric and $g(x) = x + 2$, for $x \in R$ then $f \circ a$	D) 10001 $z_{z} \in X$ and $xRy \cap yRztheD) none$	010	[]	_
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a A) $x + 2$ 21.Let $f: R \rightarrow R$ be	B) 10010101 C) 10101010 et 'X' is if for every x,y, ansitiveC) symmetric and $g(x) = x + 2$, for $x \in R$ then $f \circ$ B) $x^3 + 2$ C) $(x + 2)^3$	D) 10001 $z_{z} \in X$ and $xRy \cap yRztheD) none$	010 enxRz [[]	_
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a A) $x + 2$ 21.Let $f: R \rightarrow R$ be	B) 10010101 C) 10101010 et 'X' is if for every x,y, ansitiveC) symmetric and $g(x) = x + 2$, for $x \in R$ then $f \circ B$ B) $x^3 + 2$ C) $(x + 2)^3$ given by $f(x) = x^3 - 2$. Find f^{-1} 2) $\frac{1}{3}$ C) $x^3 + 2$ D) $x^3 - 3$	D) 10001 $z_{z} \in X$ and $xRy \cap yRztheD) none$	010 enxRz [[]	_
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a A) $x + 2$ 21.Let $f : R \rightarrow R$ be A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$	B) 10010101 C) 10101010 et 'X' is if for every x,y, ansitiveC) symmetric and $g(x) = x + 2$, for $x \in R$ then $f \circ B$ B) $x^3 + 2$ C) $(x + 2)^3$ given by $f(x) = x^3 - 2$. Find f^{-1} 2) $\frac{1}{3}$ C) $x^3 + 2$ D) $x^3 - 3$	D) 10001 $z_{z} \in X$ and $xRy \cap yRztheD) none$	010 enxRz [[]	_
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a A) $x + 2$ 21.Let $f : R \rightarrow R$ be A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ 22. The example for A) {1}	B) 10010101 C) 10101010 et 'X' is if for every x,y, ansitiveC) symmetric and $g(x) = x + 2$, for $x \in R$ then $f \circ B$ B) $x^3 + 2$ C) $(x + 2)^3$ given by $f(x) = x^3 - 2$. Find f^{-1} 2) $\frac{1}{3}$ C) $x^3 + 2$ D) $x^3 - 3$ singleton set is	D) 10001 $z \in X$ and $x R y \cap y R z the D) none g g_{is}D) x - 2$	010 enxRz [[]	_
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a A) $x + 2$ 21.Let $f : R \rightarrow R$ be A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ 22. The example for A) {1}	B) 10010101 C) 10101010 et 'X' is if for every x,y, ansitiveC) symmetric and $g(x) = x + 2$, for $x \in R$ then $f \circ B$ B) $x^3 + 2$ C) $(x + 2)^3$ given by $f(x) = x^3 - 2$. Find f^{-1} 2) $\frac{1}{3}$ C) $x^3 + 2$ D) $x^3 - 3$ singleton set is B) {a} C){2} D)All the above	D) 10001 $z \in X$ and $x R y \cap y R z the D) none g g_{is}D) x - 2$	010 enxRz [[]	
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a A) $x + 2$ 21.Let $f : R \rightarrow R$ be A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ 22. The example for A) {1} 23.If the set contains	B) 10010101 C) 10101010 et 'X' is if for every x, y, ansitiveC) symmetric and $g(x) = x + 2$, for $x \in R$ then $f \circ B$ B) $x^3 + 2$ C) $(x + 2)^3$ given by $f(x) = x^3 - 2$. Find f^{-1} 2) $\frac{1}{3}$ C) $x^3 + 2$ D) $x^3 - 3$ singleton set is B) {a} C){2} D)All the above is n elements, then the number of sub- C)2 ⁿ D)2 ⁿ⁺¹	D) 10001 $z \in X$ and $x R y \cap y R z the D) none g g_{is}D) x - 2$	010 enxRz [[]	
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a A) $x + 2$ 21.Let $f : R \rightarrow R$ be A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ 22. The example for A) {1} 23.If the set contains A) nB) n+1	B) 10010101 C) 10101010 et 'X' is if for every x, y, ansitiveC) symmetric and $g(x) = x + 2$, for $x \in R$ then $f \circ B$ B) $x^3 + 2$ C) $(x + 2)^3$ given by $f(x) = x^3 - 2$. Find f^{-1} 2) $\frac{1}{3}$ C) $x^3 + 2$ D) $x^3 - 3$ singleton set is B) {a} C){2} D)All the above is n elements, then the number of sub- C)2 ⁿ D)2 ⁿ⁺¹	D) 10001 $z \in X$ and $x R y \cap y R z the D) none g g_{is}D) x - 2$	010 enxRz [[]]
A) 10010111 19. A Relation R in a s A)AntisymmetricB) Tra 20.Given $f(x) = x^3$ a A) $x + 2$ 21.Let $f : R \to R$ be A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ 22. The example for A) $\{1\}$ 23.If the set contains A) nB) n+1 24.If A = $\{1, 3, 4\}$, B = A) A = B	B) 10010101 C) 10101010 et 'X' is if for every x, y, ansitiveC) symmetric and $g(x) = x + 2$, for $x \in R$ then $f \circ B$ B) $x^3 + 2$ C) $(x + 2)^3$ given by $f(x) = x^3 - 2$. Find f^{-1} 2) $\frac{1}{3}$ C) $x^3 + 2$ D) $x^3 - 3$ singleton set is B) {a} C){2} D)All the above an elements, then the number of sub- C) 2^n D) 2^{n+1} = {1, 2, 3, 4, 5} then	D) 10001 $z \in X$ and $x R y \cap y R z the D) none g g_{is}D) x - 2$	010 enxRz [[]]

Question Bank 2016 25.If B = {x / x is a multiple of 4, x is odd}, the set B is Γ 1 A) Null B) Power set C) Empty set D) Index set 26. The family of subsets of any set is called as 1 A) Proper subset B) Subset C) Set of sets D) Power set 27. The inverse of the identify element is the 1 A)inverse element B) Identity element C)idempotent element D) nilpotent element 28. A group with addition binary operation is known as] C)subgroup D)additive group A)Abelian group B)Groupoid 29. A group with multiplication binary operation is known as ſ 1 B) additive group C) multiplicative group D)none A)Abelian group 30. A group G is said to be _____if the commutative law holds 1 B)semigroup C)Abelian D)none A)groupoid 31. In order word (s,0) is a semigroup if for any x,y,zes then xo(yoz)= ſ 1 A)(xoy)*z $D x^{*}(y^{*}z)$ B(xoz)oyC)(xoy)oz 32. semigrouphomorphism satisfies 1 ſ B)one-one A)on-to C)one-one&on-to D)none 33. Every homomorphic image of an abelian group is 1 C)abeliangroup A)sub group B)semigroup D)none 34. If H is any subgroup of a group G then HH= ſ 1 A)H⁻¹ B)e C)1 D)H 35. A non-empty subset H of a group (G,*) a subgroup iff__where a \in H,b \in H 1 Γ A)abeH B)a*beH C)a*b⁻¹€ D)a⁻¹*beH 36. An algebric structure (s,*) which has an identity element and also satisfies closure, associative law is called a ſ 1 B)groupoid C)monoid D)none A)subgrokup 37. The identity element (if it exists) of any algebraic structure is ſ 1 A)multiple B)unique C)one D)zero 38. If a*e=a then e is called element for the operation * ſ 1 A)left identity B)Right identity C)identity D)none 39.If e*a=a then e is called element for the operation * 1 ſ A)left identity B)Right identity C)identity D)none 40. The non zero set of intergers under multiplication is 1 ſ A)monoid B)semigroup C)Group D)none 41.. the order of the identity element of a group G is 1 **Discrete Mathematics** Page16

A)1	B)2	C)0	D)3		
42. The inverse of 4 in the	e multiplicative	e group o	of integer	s modulo 7 is []
A)3	B) 2	C) 4	D) 5		
43. The order of 4 in the g	group of additi	on modu	ulo 12 is	[]	
A)3	B)5	C)7	D)10		
44. The group of all	one- one & c	onto maj	ppings fi	rom S to S then	re the order of S is n,
and	is called a	gro	up.		[]
A) anabelian B	3) symmetric (C) alterna	ating D)) commutative	
45. If G is a group, H is	a sub group of	f G and a	a,b∈ G, t	hen the relation a	\equiv b (mod H) is []
A) Reflexive B) S	Symmetric C)	reflexive	& symm	netric D) an equi	valence relation
46.The order of alternati	ng group, if th	e set S h	as n elen	nents is []	
A) n	B) n!	C) 1	n/2	D) n! /2	
47.The order of grou	up of all one- o	one & oi	nto mapp	oings from S to S	there the order of S is n,
and is.			[]	
A) n	B) n!	C) 1	n/2	D) n! /2	
48.If G is a group and	$a,b \in G$, then (a	$(ab)^{-1} =$			[]
A) $a^{-1}b^{-1}$	B) ab^{-1}	C) a	a ⁻¹ b	D) $b^{-1}a^{-1}$	
49The solution of ax	a= b in a group	G, when	rea,b∈ G	is is	[]
A) ab^{-1}	B) $a^{-1}b^{-1}$	C) a	a ⁻¹ b	D) a ⁻¹	
50. If e_1 and e_2 are two	o identity eleme	ents of a	group G	, then	[]
A) $e_1 < e_2$	B) $e_1 = e_2$	C) 6	$e_1 > e_2$	D) $e_1 e_2$	
51.If G is a finite group	o of order n , ar	nd $a \in G$	lthen		[]
A) $e^n = a$	B)a ⁿ =a	c) a	$e^n = e$	D) $a^n \neq e$	
52.If the order of an ele	ementa \in G is r	n and the	order of	a^{-1} is m ,then	[]
A) m< n	B) m > n	C) 1	$\mathbf{n} = \mathbf{n}$	D) $m = an$	
53. The order of 4 in the	he additive gro	up of int	egers mo	od 6 is	[]
A)2	B)3	C)5	D)4		
54. The inverse of 8 in	the multiplicat	ive grou	p of integ	gers mod 11 is	[]
A)7	B)9	C)5	D)6		
55If G is a group and					[]
A) $a^2b = a^2b^2$	B) $(a.b)^2 =$	$=a^2.b^2$	C) a.	$b = a^2 \cdot b^2 D$ a.b \neq	a^2b^2

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : MFCS(16CS507)Course & Branch: B.Tech - CSE

Year &Sem: II- B.Tech& I-SemRegulation:R16

UNIT III

			ELEMENT			DRICS		
1.	Enumerating	g r-permutatio	ns without i	repetitions	P(n,r)=	[]		
	A) $\frac{n!}{r!(n-r)!}$	B) $\frac{n!}{r!}$	C) $\frac{n!}{(n-r)!}$	D) None				
2.	How many 3	3 digit number	r can be for	ned using t	he digits 1,	3,4,5,6,8 and	9	[]
	A) 7*6*5	B) 3!	C) $\frac{7!}{3!}$	D) 7 ³				
3.	How many 5	5-card hands h	nave 2clubs	and 3hearts	5.	[]		
	A) C(13,2) G	C(12,3) B) C	(13,2) C(13	,3) C) C(5	2,5) D) No	one		
4.	If a student	is to answer	true or false	e questions	and there	are five quest	tions,	the number of
	ways, he car	n answer is []					
	A) 10	B) 16	C) 32		D) 5			
5.	The number	of two-digit v	words, if rep	etitions are	e allowed is	5		[]
	A) 576	B) 676	C) 52		D) 650			
6.	The four-dig	git numbers, t	hat can be	formed fro	m the digit	s 1,2,3,4,5,6,7	7 if th	ere will be no
	repetitions a	re					[]
	A) 24	B) 6	C)840)	D) 120			
7.	The three-d	igit numbers,	that can b	be formed	from the	digits 1,2,3,4,	,5 if 1	repetitions are
	allowed is						[]
		1. 125	B) 120	(C) 60	D) 36		
8.	The number	of ways sittin	ig five peop	le around a	table is			[]
Discre	te Mathemat	tics						Page18

Question Bank 2	2016
A) 24 B) 120 C) 312 D)720	
9. The number of ways of drawing 2 cards with replacement from a deck of 52 cards is	
[]	
A)2704 B) 1326 C) 52 D) 2652	
10. The number of ways of drawing 2 cards without replacement from a deck of 52 cards	s is[]
A)2704 B) 1326 C) 52 D) 2652	
11. There are 12 red balls and 8 blue balls in a box. The number of ways of selecting 5	red balls
and 3 blue balls is []	
A) 42126 B)44352 C) 12118 D) 24352	
12. The number of positive integer solutions of $x+y+z=6$ is[]	
A) 24 B) 20 C) 10 D) 15	
13. The number of two digit even number is []
A) 45 B) 24 C)81 D)50	
14. The three-digit numbers, that can be formed from digits 1,2,3,4,5, if repetitions	are not
allowed is []	
A) 125 B) 60 C) 45 D) 90	
15. The number of non-negative integer solutions of $x+y+z=6$ is []	
A) 24 B) 20 C) 60 D)28	
16. The number of non-negative integer solutions of $x+y+z=9$ is []	
A) 55 B) 45 C) 60 D)72	
17. The number of positive integer solutions of $x+y+z<7$ is []
A) 20 B) 60 C) 120 D) 90	
18. The number of permutations of the word SUCCESS is []
A) 960 B) 420 C) 120 D) 840	
19. The number of permutations of the word HAPPY is []
A) 90 B) 120 C) 60 D) 40	
20. The number of permutations of the word LAPTOP is []
A) 240 B) 120 C) 360 D) 40030	
21. The number of combinations of five objects among eight objects, if the repeti	tions are
allowed and order is not important is []
A) 645 B) 792 C) 896 D) 962	
22. The number of combinations of three objects among six objects, if the repetitions are	e allowed
and order is not important is []	

Question Bank 2016 A) 56 B)96 C) 48 D) 120 23. There are two groups, each consists of four questions each. If a student is to answer 2 from one group and 3 from another group, the number of ways that he can answer is ſ 1 A) 48 B)24 C)72 D) 30 24. The coefficient of x^5y^2 in the expansion of $(x+2y)^7$ is [] A) 42 B) 84 C) 120 D) 96 25. The coefficient of x^5y in the expansion of $(2x+y)^6$ is 1 ſ A) 192 B) 128 C) 120 D) 144 26. |AUB|=62, |A|=32, |B|=42, then $|A \cap B|=$ [] A) 24 B) 15 C) 36 D) 12 27. The number of integers<500 and divisible by 3 or 6 or 7 is ſ 1 A) 214 B) 248 C) 324 D) 194 28. The number of integers<250 and divisible by 7 or 11 is ſ 1 **B**) 48 C) 74 D) 9 A) 54 29. The number of non negative integer solutions of $x_1 + x_2 + x_3 + x_4 = 8$ have..... ſ 1 B)164 A) 165 C) 166 D)163 30. The coefficient of x^4y^7 in the expansion of $(x - y)^{11}$ is [] A)-330 B) 330 C) - 332D) 332 31. The number of non negative integer solutions of $x_1 + x_2 + x_3 = 11$ have.... 1 [A)65 **B)74** C) 75 D)78 32. The coefficient of x^2y^2 in the expansion of $(2x + 3y)^{10}$ is [] A)1620 B)162 C) 1820 D)1520 33. If n(A)=20, n(B)=30 and $n(A \cap B)=5$ then $n(A \cup B)=$ [] B) 40 B) 55 C) 45 D) 34.By solving C (n, 2) = 28, $n = \dots$] Γ C) 7 D) 10 A) 9 B) 8 35. The number of circular permutations of n objects taken all n at a time is ſ] A) n – 1 B) (n-1)!C) n D) n! 36.If anti clock wise & clock wise order of arrangements are not distinct then the number of circular permutations of a distinct items is [] A) N – 1 B) (n-1)!C) $\frac{1}{2}(n-1)!$ D) none 37. The coefficient of $x^2y^3z^2$ in the expansion of $(x + y + z)^7$ is ſ 1 B)200 C) 820 A)120 D)210

38. The number of ways of dividing a set of size 5 into 3 mutually disjoint						
orde	ordered subsets of sizes 2, 1, and 2 is					
A) 5	50	B) 30	C)40	D)35		
39. If C (1	39. If C ($n,1$) = C ($n,2$) then $n =$					
A)	2	B) 1	C) 3	D) 4		
40. The coefficient of $x^2y^2z^2$ in the expansion of $(x + y + z)^6$ is]
A)9	0	B)100	C) 80	D)10		

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (OBJECTIVE)

Subject with Code :MFCS(16CS507) Course & Branch: B.Tech - CSE

Year &Sem: II- B.Tech& I-Sem Regulation:R16

UNIT V

<u>GRAPH THEORY</u>

1. A regular graph of de	egree has no	lines.		[]	
A) 0	B) 1	C) 2	D) 3			
2. The maximum degre	e of any vertex in	a simple gra	ph with n vertice	es is	[]
A) n	B) n+1	C) n-1	D) n+2			
3. A graph G has 21 ed	ges, 3 vertices of	degree 4 and	other vertices of	f degree 3. Find		
the number of vertices	s in G.				[]
A) 10	B) 11	C) 12	D) 13			
4. The maximum numb	er of edges in a sir	nple graph w	ith n vertices is		[]
A) n(n-1)/2	B) (n-1)/2	C) n(n+1)/	2 D) n(n1)			
5. A graph which allow	s more than one ea	dge to join a	pair of vertices i	s called	[]
A) Simple graph	B) Multi-graph	C) Null	graph D) W	eighted graph		
6. A graph G with no self loops is called a [
Discrete Mathematics						Page21

A) Simple grap	h B) Multi-gr	aph C) Null graph	D) Weighted graph		
7. A graph having l	oops but no multi	ple edges called a		[]
A) Simple grap	_		aph D) Weighted graph		
			es are adjacent is called	[]
A) Simple grap			-	L	1
		umber of nodes of de		[]
A) n-1	B) n	C) n+1	D) 2n	L	1
10.The total number	,	,	,	[
a) n	b) n^2	c) $\frac{n(n+1)}{2}$	d) $\frac{n(n-1)}{2}$	L	
11. A graph without	edges is called a	graph	2	[
	h B) null graph	C)infinite grap	bh D) simple graph	L	
		f each vertex is		[]
A) same	-	C) always zero	D) always one	L	1
,	,	ed component of grap	•	[]
A) BFS	B) DFS	C) Simple Graph	D)Tree	L	1
14. A regular graph			D)IIC	г	1
A) 0	B) 1	C) 2	D) 3	Ĺ]
15. BFS stands for	D) 1	0)2	D) 5	г	1
	Sourch B) Bid Fi	rst Search C) Breadt	h First Soorch D) B	[i First] Soora
	,		,		Scare
	-	s of degree 4 and only	er vertices of degree 3. Fin	iu r	1
the number of		() 12	D) 12	L]
	B) 11		D) 13	г	1
	-	x in a simple graph w		L	Ţ
A) n	B) n+1	C) n-1	D) n+2	r	,
18. Eular's rule is				l]
A) v+e+r=2	B) v-e+r=2	C) ve-r=2	D) v+er=2	-	-
19.A planar graph ha	-	-	-]
A) one	B) two	C) Three	D) four	_	_
-		e edges, v vertices ar	-	[]
A) v+e+r=2	B) v-e+	,	·		
21.A connected grap		Euler Circuit is calle]
A) Euler trai	B) Semi	-Euler graph C) Eul	er graph D) Hamilton graj	ph	

22. A complete bipartite graph $K_{m,n}$ is planar if and only if [] A) m>3 or n>3 B) m<3 or n>3 C) m<=3 or n<=3 D) m>=3 or n>3 b 23.A graph G=(V,E) is called a ____ graph if its vertices V can be partitioned into twosubsets V₁ and V₂such that each edge of G connects a vertex of V1 to a vertex of V2].] A) simple B) bipartite C) complete bipartite D) multi graph 24. The chromatic number of completebipartite graph is ſ 1 D) 0 A) 1 B) 2 C) 3 25. A complete graph with n vertices will have _____ edges [] A) (n-1)(n-2)/2B) n(n-1)/2C) (n-2)/2D) n(n-2)/226. A graph which allows more than one edge to join a pair of vertices is called a ſ 1 A) simple graph B) null graph C) multi graph D) Pseudo graph. 27. If G is a connected graph with n vertices and m edges, a spanning tree of g must have____ edg 1 es ſ A) n B) n+1 C) n+3 D) n-1 28.A given connected graph is a Eular graph if and only if all vertices of G are of ſ 1 A) same degree B) even degree C) odd degree D) Different degree 29.An _____ through a graph is a path whose edge list contains each edge of the graph exactly onc] ſ e. A) Eular path B) Eular circuit C) Eular graph D) Eular region 30. An _____ is a graph that possesses a Eular circuit. [] A) Eular path B) Eular circuit C) Eular graph D) Eular region 31. A circuit in a connected graph which includes every vertex of the graph is known as [1] B) Universal D) Clique A) Eular C) Hamiltonian 32.If G is agraph within vertices, then a Hamiltonian cycle in G will contain exactly _____ edges] [A) n-1 B) n C) n+1 D) n+2 33. The length of a Hamiltonian path in a connected graph of n vertices is] ſ D) n+2 A) n-1 B) n C) n+1 34. A circuit in a connected graph which includes every vertex of the graph is known as [1 A) Eular C) Hamiltonian B) Universal D) Clique 35. The number of colors required to properly color the vertices of every planar graph is [1 **Discrete Mathematics**

A) 2	B) 3	C) 4 D)	5	
36. The vertices	of a planar graph with	n less than 30 edges is _	colorable	.[]
A) 1	B) 2	C) 3	D) 4	
37. A simple con	nected planar graph v	with 17 edges and 10 ve	ertices cannot be	colorable.[]
A) 1	B) 2	C) 3	D) 4	
38. The chromat	ic number of an isola	ted vertex is		[]
A) one	B) two	C) three	D) four	
39. The Chroma	tic number of a graph	having atleast one edg	ge is atleast	[]
A) one	B) two	C) three	D) four	
40. Every	graph is 5colorable			[]
A) simple	B) bipartite	e C) planar	D) Euler	

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (OBJECTIVE)

Subject with Code :MFCS (16CS507) Course & Branch: B.Tech - CSE Year &Sem: II- B.Tech& I-SemRegulation:R16

UNIT IV

RECURRENCE RELATIONS

1)The series 1		[]			
a) ∑x ^г	b)∑(-1)x ^r	c)∑(-a) ^r x ^r	d)none			
2)The co-effici	ent of $(x^3+x^4+x^4)$	x ⁵ +) ⁵ is=			[]
a)126	b)127	c)125	d)none			
3) The solution	of linear recu	rrence relation is -	methods		[]
a)4	b)3	c)2	d)none			
4) Iteration me		[]			
a) not substitu	ition	b)characterist	ic root	c)step by step	d)none	
5)Which meth	od ,the solutio	on is obtained as th	e sum of two pa	rts	[]
a)substitution	b)ch	naracteristic root	c)step by step	d)none		
6) When fn= 0,	thentheequat	ion is			[]
a)homogeneous b)non-homogeneous c)none						
7) If the charac	[]				
a)a _n =b	$b_1 2^n + b_2 (-1)^n$	b)a _{n=} (b ₁ +2b ₂)(-	1) ⁿ	c)(2b ₁ +(-1)b ₂)r ⁿ	d)none	

				Ques	tion Bank	20	16
8) The solutio	n of linear non-	homogeneous equ	uation is=			[]
a) $a_n = a_n^{(h)} + a_n^{(p)}$) b)a _n	$_{=}A_{0}+A_{1}n+A_{2}n^{2}$	c)Ab ⁿ	d)none			
9)is called	l a particular so	olution				[]
a)a ^{,(h)}	b)an ^(p)	$c)a_n = a_n^{(h)} + a_n^{(p)}$	d)none				
10) a _n =2a _{n-1} is	a homogeneou	ıs linear recurrenc	e relation of ord	er		[]
a)2	b)3	c)1	d)non	е			
11) If f(n)=2 ⁿ	and 2 is the roo	ot of the character	istic equation,the	enthetrial soluti	on is	[]
a)A2 ⁿ n ²	b)A2 ² n ²	c)A ² 2	² n ²	d)none			
12) The assoc	ated linear hor	nogeneous recurre	ence relation sol	ution is=		[]-
a)an ^(h)	b)a _n ^(p)	C) a _N		D)none			
13) ∑a _n x ⁿ is ec	ual to					[]
a)a ₀ +	a ₁ x+a ₂ x ² +	b)a ₀ x	$+a_1x^2+a_2x^3+$	C) a ₀ + a ₁ X	D)none		
14)Arecurren	ce relation is a	formula that relat	es for any intege	r		[]
a)n≥1	b)n <u>s</u>	≤1 c)n=0	d)non	е			
15)If the solu	tion isa _n =(b ₁ +b	₂n+b₃n²)2 ^{n,} ,then tł	ne value of "r" is			[]
a)2	b)3	c)1	d)non	е			
16)If f(n) is co	onstant then th	e trial solution is				[]
a)Ab ⁿ	b)A	c)Ab ⁿ s ⁿ	d)none				
17) Solving re	currence relation	on fortypes				[]
a)2	b)3	c)1	d)non	е			
18) If a _k =2a _{k-1} .	⊦k,for all k≥2,a ₁	=1, then the value	of a ₃ =			[]
a)12	b)11	c)4	d)non	е			
19) If a _{n+2} -4a _n	1+4a _n =2 ⁿ ,then	the equation is				[]
a)hor	nogeneous	b)non-homog	jeneous c)char	acteristic	d)none		
20) Trail solut	ion of $a_n^{(p)}$ is A_0	$+A_1n+A_2n^2++A_n$	n ^m , then the deg	ree is		[]
a)2	b)m	c)n	d)none				

			Questior	Bank 2016
21.The generating	function of 1 i	s		[]
A) $\frac{1}{1-x}$ B)	$\frac{1}{1+x}$ C) $\frac{1}{1-2x}$	D) $\frac{1}{1}$	x	
22.The generating	g function of 3 ^r	' is		[]
A) $\frac{x}{1-3x}$	B) $\frac{x}{1+3x}$	$C)\frac{1}{1+x}$	$D)\frac{x}{1-x}$	
23.The generating	g function of n	is		[]
A) $\frac{1}{1+x}$	B) $\frac{1}{1-x}$	$C)\frac{x}{(1-x)^2}$	$D)\frac{1}{(1-x)^2}$	
24.The generatin	g function of 1	+n is		[]
A) $\frac{1}{1-x}$	B) $\frac{1}{1+x}$	$C)\frac{x}{(1-x)^2}$	$D)\frac{1}{(1-x)^2}$	
25. The generation	ng function of t	he sequence 1,	-2,4,-8,16is	[]
A) $\frac{x}{1+2x}$	B) $\frac{1}{1+2x}$	$C)\frac{x}{(1-x)^2}$	$D)\frac{x^2}{(1+2x)^2}$	
26.The exponenti	al generating f	unction of the se	equence 1,1,1,1is	[]
A) e^x	B) e^{-x}	C) e^{2x}	$D)e^{-2x}$	
27.The exponent	ial generating f	function of the s	equence 1,0,-1,0,1,0,-1,0), 1,is
A) Cos x	B) s	inx C) co	$DS2x$ D) e^{2x} .	
28. $1+x+x^2+x^3+$	=			[]
A) $\frac{1}{1+x}$	B) $\frac{1}{1+x^2}$	$C) \frac{1}{\left(1-x\right)^2}$	D) $\frac{1}{(1-x)}$	
29. the order of R	$R a_{n+1} - 2a_n = 2$	is		[]
A) 2	B) 1	C) 3	D) 4	
30. The order of a	$a_{n-2} + a_{n-1} + a_n$ is	•••••		[]
A) 1	B) 2	C)3	D)4	

Prepared by P. Sasikala& Rukmani